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Abstract

In this paper, stochastic analytical equations for obtaining the vibratory response of bundles of cylinders
in turbulent axial flow, with various degrees of computational efficiency, are presented. Lateral components
of the turbulent fluid force-per-unit-length cross-spectral densities in a bundle of cylinders are obtained by
the integration of differential wall-pressure fluctuations around the circumferences of the cylinders. These
quantities are used as excitation in the calculation of random vibration response spectral densities of the
cylindrical structures. Properties of symmetry applicable to lateral forces in bundles of symmetrically
arranged cylinders are also discussed.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The calculation of turbulent fluid forces acting on cylindrical structures subjected to axial flow
is important to the study of vibration of bundles of fuel rods in nuclear reactor cores and tube
banks in heat exchangers.
Previously [1–3], it was shown that the dynamical equations governing the vibratory motions of

such structures can be expressed in matrix form as2
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where MðxÞ; CðxÞ and KðxÞ are the mass, damping and stiffness matrices of the system,
respectively, and they are square matrices; x; y; and z are the Cartesian co-ordinates illustrated in
Fig. 1; t represents time; wðx; tÞ and vðx; tÞ are the vectors of lateral cylinder displacements from
equilibrium in the z and y directions, respectively; fzðx; tÞ and fyðx; tÞ are the vectors of net lateral
turbulent fluid forces per unit length acting on the walls of the cylinders in the z and y directions,
respectively (see Appendix A).

2. The stochastic equations

2.1. The full equation

To obtain a solution for random cylinder vibration, manipulation of Eqs. (1) by a combination
of Galerkin and Fourier methods gives rise to fluid force-per-unit-length cross-spectral densities
(CSDs), which can be written in terms of a weighted double integral of the turbulent wall-pressure
fluctuation CSDs around the circumferences of the cylinders [1,4,5]. Previously [3,6],
measurements of the latter were obtained so that an analytical representation of the former can
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Fig. 1. Definition of Cartesian co-ordinates ðx; yr; zrÞ; lateral displacements ðvr;wrÞ and azimuthal co-ordinate ðyrÞ for
cylinders in a channel; r ¼ 1; 2;y;K ; where K is the number of cylinders in the channel. Pressure fluctuations are also

illustrated laterally around cylinder 2. Crs is the angle subtended from the zr axis by cylinder s; ers is the distance

between the centres of cylinders r and s:
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now be achieved. This will be done shortly. The most general of the stochastic equations of which
these forcing functions form a major part are as follows.
Writing for simplicity

fðx; tÞ ¼ ffzðx; tÞ; fyðx; tÞg
T; gðx; tÞ ¼ fwðx; tÞ; vðx; tÞgT; ð2Þ

the solution of Eq. (1) for random cylinder response can be written as [1,2]
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where RZiZj
ðx;x0; %tÞ is the cross-correlation of Ziðx; tÞ and Zjðx

0; tÞ; and SZiZj
ðx;x0;OÞ is defined as the

corresponding CSD; fcðxÞ;fnðx
0Þ are comparison functions which satisfy the boundary conditions

of the problem;3 N is the number of comparison function modes selected, K is the number of
cylinders in the channel (see Fig. 1); Hbðc;iÞ;pðOÞ and Hbðn;jÞ;qðOÞ are elements of the frequency
response function matrix of the system and are given by Eqs. (A.5b) and (A.3c)–(A.3e) in
Appendix A with Wn0 ¼ fn0 [1,4]; SfbðpÞfbðqÞ ðx1;x2;OÞ is the CSD of fbðpÞðx1; tÞ and fbðqÞðx2; tÞ; O ¼
2pf ; where f is frequency in Hz; %t represents time delay in s; L is the cylinder length; bðc; iÞ ¼
2Kðc� 1Þ þ i; aðpÞ ¼ flargest integerpð2K þ p � 1Þ=2Kg ¼ 1; 2;y or N; and bðpÞ ¼ p �
2K ½aðpÞ � 1� ¼ 1; 2;y or 2K : The derivation of Eq. (3) is given in Appendix A.
Now, certain practical applications may be such that the generality of Eq. (3) is unwarranted,

and certainly in some situations (e.g., very large cylinder bundles and single-cylinder (annular)
flows) the vast amount of numerical computation that ensues can be drastically reduced without
excessive loss in accuracy and meaning of the results. Thus, special cases of Eq. (3), which are
numerically more efficient, are to be utilized where advantageous. Some of these special cases now
follow.

2.2. Case 1 (no excitation coupling)

Suppose, for instance, that inter-cylinder fluid excitation coupling is very much smaller than
correlations between points on the same cylinder, which is the case in a relatively large and sparse
cylinder bundle [3]. Then, the inter-cylinder cross terms of SfbðpÞfbðqÞ ðx1;x2;OÞ in Eq. (3) are
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negligible, and the equation reduces to

SZiZj
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where

q0ðn0; pÞ ¼
ðn0 � 2ÞK þ bðpÞ; bðpÞ > K ;

ðn0 � 1ÞK þ bðpÞ; bðpÞpK :

(

Eq. (4) is derived in detail in Appendix A. The number of summed elements indicated by n0 (the
4th summation) has been reduced considerably compared to Eq. (3). Ignoring other parts of the
overall calculation, this manipulation has resulted in computational savings of the order of K : 1:
For example, every hour of computation of the sums using Eq. (4) for a 16-cylinder bundle
ðK ¼ 16Þ corresponds to approximately 16 hours of computation for the same result using Eq. (3).

2.3. Case 2 (no excitation coupling—mode 1)

In addition to the above, assume that contributions by the first mode f1 to the cylinder
response far outweigh those of higher modes fc; c > 1: Eq. (4) can then be further reduced to

SZiZj
ðx; x0;OÞ ¼f1ðxÞf1ðx
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�
; i; j ¼ 1; 2;y; 2K ; ð5aÞ

where HipðOÞ are elements of the now unimodal frequency response function matrix

½HðOÞ� ¼
Z L

0
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� ��1
ð5bÞ

and

q00ðn; pÞ ¼
ðn0 � 2ÞK þ p; p > K ;

ðn0 � 1ÞK þ p; ppK :

(

This too is derived in Appendix A. Increased savings in computation of the sums over the full
Eq. (3) has been achieved ðKN4 : 1Þ; e.g., for every second of computation of the sums required by
Eq. (5a) for a 16-cylinder bundle ðK ¼ 16Þ; approximately 6 h of computation would be required
by Eq. (3) employing six modes ðN ¼ 6Þ; while Eq. (4) would require the order of 22 min:4 Note
that with K ¼ 1; Eq. (5a) reduces to the eccentric, annular flow problem.
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4The reasoning that leads to this is as follows. Consider 1 s of computation using Eq. (5a). In Eq. (3) this corresponds to

KN4 ¼ 16	 64 ¼ 20 736 s ¼ 5:76 h: Similarly, in Eq. (4) it corresponds to 5:76 h=K ¼ 5:76 h=16 ¼ 0:36 h ¼ 21:6 min:
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2.4. Case 3 (no excitation and no response coupling)

In a third possibility, higher vibration modes remain important but all inter-cylinder fluid
coupling (i.e., both excitation and response) becomes negligible [5]. Eq. (1) then becomes
completely uncoupled and the matrices M;C and K are diagonal. A multi-cylinder bundle can
then be treated as one cylinder and one degree of freedom at a time [5]. Hence, from Eq. (3) we
may write

SZiZi
ðx;x0;OÞ ¼

XN

c¼1
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n¼1

fcðxÞfnðx
0Þ
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p¼1
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Z L
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dx1

Z L

0
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where H
ðiÞ
cpðOÞ are elements of the single-degree-of-freedom frequency response function matrix

½H ðiÞðOÞ� ¼
Z L

0

f1ðxÞf1ðxÞ f1ðxÞf2ðxÞ ? f1ðxÞfNðxÞ

^ ^ ^
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2
64

3
75

2
64
	 ð�O2MiiðxÞ þ iOCiiðxÞ þ KiiðxÞÞ dx

��1
: ð6bÞ

Eq. (6b) can be easily verified using Eq. (A.3) in Appendix A, and Equation (6a) can be derived
using the method of Appendix A for a single-degree-of-freedom system. The savings in numerical
computation of the sums realized here over the full Eq. (3) are of the order of 4K2 : 1:

2.5. Case 4 (no excitation and no response coupling—mode 1)

Finally, we consider non-eccentric annular flow. Here, the only two existing degrees of freedom
are uncoupled, and assuming higher modes are also negligible, Eqs. (5a) and (6a) both reduce for
first mode vibration to [7–9]

SZ1Z1ðx; x
0;OÞ ¼ f1ðxÞf1ðx

0ÞHn

11ðOÞH11ðOÞ
Z L

0

dx1

Z L

0

dx2 f1ðx1Þf1ðx2ÞSf1f1ðx1;x2;OÞ: ð7Þ

This is the simplest and most common of all these expressions. Consequently, the greatest savings
obtain ð4K2N4 : 1Þ: All of the foregoing different possibilities are summarized together in Tables 1
and 2.

2.6. Temporal response and principal directions of vibration

The inverse Fourier transforms of the foregoing response spectral densities give rise to temporal
response correlations, including r.m.s. vibration amplitudes (see Eq. (3)). There is a need, for the
purpose of design, to study the relationships between dominant frequencies or frequency bands, in
the system frequency response functions and the excitation spectral densities, to see how they
interact, with respect to changing parameters such as flow velocity and cross-sectional geometry,
to affect temporal observations such as r.m.s. vibration amplitudes and correlations [8,10]. This
should be a consideration of future research.
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Also, since the cylinder vibrations are random, in both amplitudes and directions [8], further
operations on SZ1Zj

will be required to determine the preferred or principal planes or directions
of oscillation where vibration amplitudes and correlations will be greatest and more focused
[1,10–16].5 The responses in any given directions around the cylinders can be determined, by
resolving vectors, from those in the Cartesian directions [1,10].

ARTICLE IN PRESS

Table 1

Summary of the full and reduced equations

Equation Characteristics

(3) Full, unabridged (FULL)

(4) No inter-cylinder excitation correlation (NOINTEC)

(5a) No inter-cylinder excitation correlation and

first mode response only (NOINTEC 1)

(6a) No inter-cylinder excitation correlation and

no inter-cylinder response correlation (NOINTERC)

(This is identical to the problem of annular flow)

(7) Single cylinder annular flow and

first mode response only (ANNULAR)

(This is the same as NOINTERC with N ¼ 1)

Table 2

Ratios of the number of terms in the summations—Eq: x : Eq: y

Eq: y

(3) (4) (5a) (6a) (7)

Eq: x (3) 1:1 K : 1 KN4 : 1 4K2 : 1 4K2N4 : 1
(16:1) (20736:1) (1024:1) (1327104:1)

(4:1) (324:1) (64:1) (5184:1)

(4) 1:1 N4 : 1 4K : 1 4KN4 : 1
(1296:1) (64:1) (82944:1)

(81:1) (16:1) (1296:1)

(5a) 1:1 4K=N4 : 1 4K : 1
(0.05:1) (64:1)

(0.2:1) (16:1)

(6a) 1:1 N4 : 1
(1296:1)

(81:1)

(7) 1:1

Upper parantheses values are for K ¼ 16;N ¼ 6; lower parantheses values are for K ¼ 4;N ¼ 3:

5Recall that Zi and Zj are displacements in the fixed Cartesian directions illustrated in Fig. 1. The principal directions

are not necessarily those defined as the Cartesian.
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3. Characterization of differential wall-pressure CSDs

Differential wall-pressure CSDs constitute the force-per-unit length CSDs via the following
equations [1,10]:

Sfifj
ðx;x0; f Þ ¼R2

Z p

0

Z p

0

S %prðiÞ %psðjÞ ðx; x
0; yr; ys; f ÞTrigiðyrÞTrigjðysÞ dyr dys;

i; j ¼ 1; 2;y; 2K ; ð8Þ

where

rðiÞ; sðjÞ ¼
i; j; i; jpK ;

i � K ; j � K ; i; j > K

(

and R is the cylinder radius; %prðiÞ ¼ prðiÞðx; yr; tÞ � prðiÞðx; yr þ 1801; tÞ; the differential wall-pressure
acting on the wall of the rth cylinder ðprðiÞð?Þ being the ‘‘point’’ wall-pressure and yr the
azimuthal co-ordinate measured from Cartesian direction zr—see Fig. 1); S %prðiÞ %psðjÞ ðyf Þ is the
differential wall-pressure CSD between %prðiÞðx; yr; tÞ and %psðjÞðx0; ys; tÞ; f ¼ O=2p (Hz);6 and
TrigiðyrÞ ¼ cos yr if fiðx; yr; tÞ points in the z direction, ¼ sin yr if fiðx; yr; tÞ points in the y direction
(this depends on the value of i—see Eqs. (1) and (2)).
From previous measurements [3,6–8,16–22], it can be shown that it is possible to characterize to

some degree the boundary layer differential wall-pressure CSD in a bundle of stationary cylinders
by an expression of the following form:7

S %pr %ps
ðx; x0; yr; ys; f ÞCSppðx0; y0; f Þ=d0a0b

fDh

U
; yr; ys;y

� �
g

fDh

U
;
jx � x0j

Dh

; ys;y

� �

	 d
fDh

U
;

x

Dh

; yr;y

� �
d

fDh

U
;

x0

Dh

; ys;y

� �
a

fDh

U
; yr;y

� ��

	 a
fDh

U
; ys;y

� ��1=2

exp½�i2pf ðx0 � xÞ= %UcðysÞ�; r; s ¼ 1; 2;y;K ; ð9aÞ

where Spp is a differential wall-pressure PSD on one of the cylinders in the bundle at a reference
location ðx0; y0Þ; and is given by8

Sppðx0; y0; f ÞC1
2

bsr2U3Dhc2ðD=DhÞd0a0½PðrUDh=m;yÞ�; ð9bÞ

where

d0 ¼ dðfDh=U ;x0=Dh; y0;yÞ; a0 ¼ aðfDh=U ; y0;yÞ ð9cÞ
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6Note that if point pressure CSDs, Sprps
; are utilized in Eq. (8) instead of the differential ones, S %pr %ps

; the integrals
should be taken from 0 to 2p instead of from 0 to p:

7See Eqs: ð20Þ and (28a) of Ref. [3].
8Note that the physical measurements in Ref. [3] are of Gppðyf Þ; the one-sided PSD, while Sppðyf Þ; the two-sided

PSD, is 1
2
	 Gppðyf Þ; hence the factor of 1

2
is here but not in Ref. [3]. Also, bs from Ref. [3] has been replaced here by

bs 	 c2ðD=DhÞ; in order to reveal or rather separate the effect of confinement of the flow on the wall-pressure PSD, due

to D=Dh [6].
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where bs is a system-dependent ‘‘quietness’’ function of proportionality (or bundle system
‘‘constant’’) which accounts for the differences in magnitude of the CSD (or PSD) from one
system to another, r the fluid density, U the spatially averaged mean flow velocity, Dh the cross-
sectional hydraulic diameter of the bundle, D ¼ 2R ¼ cylinder diameter, c is a function that
describes the effect of confinement on the wall-pressure CSDs [6]; P is a function that accounts for
power level changes due to varying Reynolds number ðReÞ; and the remaining functions b; g; d; a
and %Uc are defined as follows [3]:

b a function, dependent mainly on fDh=U ; yr and ys; that accounts for the decay of
correlation laterally between different points in the bundle (b-1 as yr-ys on the same
cylinder and, in a laterally symmetric arrangement, b ¼ 0 between points 901 apart on a
given cylinder—see Appendix B, item 3)

g a function, dependent mainly on fDh=U ; jx � x0j and ys; that accounts for the decay of
correlation longitudinally ðg-1 as x0-xÞ

d a function (which is postulated to be dependent mainly on fDh=U ; x; x0; yr and ys; as
well as varying bundle entrance conditions [3,23,24]) that accounts for changes in the
turbulent pressure field with distance travelled into the bundle before full development is
reached (at full development, d ¼ 1)

a describes the azimuthal variation in shape of the wall-pressure PSD around a cylinder and
is dependent mainly on fDh=U and y

%UcðysÞ the average velocity of convection of wall-pressure disturbances longitudinally
with the flow ð¼ ðx0 � xÞ=%tc;x0

Xx; where %tc is the time delay for correlation maximum
between x and x0); it is only slightly influenced by azimuthal location of the longitudinal
plane (i.e., ys)

Using the above definitions, a quick check shows that Eq. (9a) reduces to an identity when
x ¼ x0 ¼ x0 and yr ¼ ys ¼ y0; as it should.
Previously [3,6], it was found for a rectangular array of eight stationary cylinders, such as that

illustrated in Fig. 2, that in the fully developed part of the flow, the following approximations
hold:9

cC½1þ ðD=DhÞ
1:25��0:9; ð10aÞ

PC1=Re ¼ m=ðrUDhÞ; ð10bÞ

gCexpð�0:7f j %xj=UÞ½1þ fexpð�0:2f j %xj=UÞ � 1gsin2 2fs�; fDh=UX0:25; ð10cÞ

aCa0f1� sin2 2fr½0:36� 50ðfDh=UÞ3 expð�3ðfDh=UÞ2Þ�g; fDh=UX0:25 ð10dÞ

ARTICLE IN PRESS

9 In the absence of data to the contrary, the assumption will be that these functions remain more or less the same in

the developing part of the flow, as in the fully developed part, for the sake of making sample calculations via Eq. (3).

Furthermore, the expressions for g; a and %Uc are based only on data in the relatively low range of Re ¼ 6800–48 000

and at a fixed value of D=Dh ¼ 2:095 [3].
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and

%UcðysÞCaU=½1þ f ðysÞ�; fDh=UX0:25; ð10eÞ

where %x ¼ x0 � x; fr and fs are related to yr and ys as in Fig. 2; and

a0 ¼ 1�
fDh

3U

� �2
 !2

þ 2z1
fDh

3U

� �2
2
4

3
5
�1=2

þ 31:986 1�
fDh

0:1349U

� �2
 !2

þ 2z2
fDh

0:1349U

� �2
2
4

3
5
�1=2

;

z1 ¼ 0:6; z2 ¼ 8:68582; ð10fÞ

aC1:129 ðconstantÞ and f ðysÞC0:05 sin2 2fsðysÞ; ð10gÞ

f ðy0Þ is notably a very weak function of ys: Also, as indicated, the above approximations are not
valid for fDh=Uo0:25 approximately. The error or uncertainty in the above equations was
determined to be of the order of 20% [6]. Plots of g versus f %x=U (Eq. (10c)) have shown that the
longitudinal correlation is significant over approximately 4 or 5 cycles ðf %x= %UcCf %x=1:129Up4
or 5) [3].
For the purpose of obtaining response calculations near zero frequency, the wall-pressure PSD

and CSD in the small frequency range below fDh=U ¼ 0:25 are needed. In the absence of
empirical data in this range, a reasonable estimate of the PSD will be obtained in this paper by
linear extrapolation of that portion of the PSD measured above fDh=U ¼ 0:25 to zero magnitude
at fDh=U ¼ 0: The justification for doing this will be given shortly. Lateral spectral density factors
derived from the CSD will be treated similarly.
Finally, it was desirable to test the waters and apply the above approximations

to other stationary cylinder bundles by utilizing Eqs. (10a), (10b), (10d) and (10f) as they
are in Eq. (9b) in the fully developed region of the flow (i.e., where d0 ¼ 1) and determine
the resulting values, or approximations, for bs: This was done for a number of systems
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Fig. 2. Cross-section of the square array of eight cylinders in which the wall-pressure measurements of Eqs. (10a) to

(10g) were made. The azimuthal co-ordinates f in relation to y [3,6] are defined.

Ll.R. Curling, M.P. Pa.ıdoussis / Journal of Sound and Vibration 264 (2003) 795–833 803



from the literature and the results are summarized in Fig. 3(a), (b) and Table 3.10 For calculation
purposes the ranges of bs shown may be arbitrarily extended on the low-frequency side to
fDh=U ¼ 0; if it can be assumed that bs inherently changes very little or even not at all with
fDh=U :

4. Empirical force-per-unit-length CSDs

Eq. (9a) may be substituted into Eq. (8) and the double integration performed to yield, for
stationary cylinders,11

4Sfifj
ðx;x0; f Þ

r2U3DhD2
¼

Sppðx0; y0; f Þ
r2U3Dhd0ao

Kij
fDh

U
;

x

Dh

;
f j %xj
U

;y

� �
expð�i2pf ðx0 � xÞ=ðaUÞÞ;

i; j ¼ 1; 2;y; 2K ; ð11Þ

where

Kij
fDh

U
;

x

Dh

;
f j %xj
U

;y

� �
¼
Z p

0

Z p

0

bðy; yr; ys;yÞgðy; ys;yÞ

	 ½dðy; x; yr;yÞdðy; x0; ys;yÞaðy; yr;yÞaðy; ys;yÞ�1=2

	 exp½�i2pf ðx0 � xÞf ðysÞ=ðaUÞ� TrigiðyrÞTrigjðysÞ dyr dys;

r; s ¼ rðiÞ; sðjÞ; ð12Þ

defined earlier in Eq. (8), and use has been made of Eq. (10e). Note that Kij above is a complex
function.

4.1. The differential pressure lateral spectral density factors (LASDF)

Neglecting the weak effect of ys on g and f ðysÞ; Eq. (12), reduces to

KijCg
fDh

U
;
%x

Dh

;y

� �
Kij;y

fDh

U
;y

� �
; ð13Þ

where

Kij;y ¼
Z p

0

Z p

0

bðyr; ysÞ½dðx; yrÞ dðx0; ysÞaðyrÞaðysÞ�1=2TrigiðyrÞTrigjðysÞ dyr dys: ð14Þ
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10 It is, strictly speaking, not valid to use these correlation functions, particularly the wall-pressure PSD shape

function given by ao ¼ a0 (Eq. (10f)), in arbitrary cylinder bundles and tunnel systems, as geometric and other

characteristic differences would render these functions slightly or perhaps greatly different from one system to another.

In fact, the relatively large variance of bs for the Clinch and Ohlmer et al. systems in Fig. 3(b) and Table 3, compared to

the others, gives evidence that ao; given by Eq. (10f), is less applicable to the Clinch and Ohlmer et al. systems than to

the others. In order to alleviate, or rather characterize, the effects of some of these differences one might try to restrict

the functions to a particular flow geometry and use turbulence correlation length scales to help characterize the

turbulent pressure field over different bundle systems [6].
11This assumes that bs of Eq. (9b) does not vary with location, y; or is negligibly variant.
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g is the longitudinal correlation decay function defined earlier, with the exception that the weak
dependence on ys (see Eq. (10c)) has been neglected, so that g could be factored out of the
integrand of Eq. (12); g is therefore considered to be responsible for variations of correlation in
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Fig. 3. Measured differential wall pressure PSD data from the literature: (a) normalized with respect to r2U3Dh 	
PðReÞ 	 ½cðD=DhÞ�2 to illustrate the scaling effect of bs; (b) data of part (a) normalized by a0 of Eq. (10f) to give

estimates of bs: In both (a) and (b): þ; Ohlmer et al. [17,25]; ; Clinch [20]; W; Curling and Pa.ıdoussis [3,6,26]; 	; Lin
et al. [21] and Mulcahy et al. [22]; * ; Bakewell et al. [18]; ’; Gagnon [unpublished].
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longitudinal planes only. Kij;y is a collective quantity and is termed the differential pressure lateral
spectral density factors (LASDF) and is responsible for variations of correlation in lateral planes
only.12

Note that Kij;y is a real function; note also that, by reason of d; it might reasonably be expected
to vary in magnitude and shape with axial co-ordinates x and x0; in the developing part of the flow
[3,26]. In the fully developed region, however, where d ¼ 1; it is invariant with changing axial
location [3]. In what follows, the analysis will be restricted to the fully developed part of the flow.
If one sets %x ¼ x0 � x ¼ 0:0 in Eq. (13) so that g ¼ 1:0 and Kij reduces to Kij;y; one obtains using

Eqs. (11) and (9b) that

Kij;y ¼
4Sfifj

ðx;x0 ¼ x; f Þd0a0
D2Sppðx0; y0; f Þ

¼
8Sfifj

ðx; x0 ¼ x; f Þ
r2U3DhD2bsc2P

: ð15Þ

Given the complexities of bðyr; ysÞ for a bundle of cylinders [3] (as opposed to the much simpler
cases of annular and pipe flows [7,8]) Eq. (15) is a welcome circumvention of the need for direct
evaluation of Eq. (14), as Sfifj

ðx;x0 ¼ x; f Þ is a directly measurable quantity. In a previous
analytical study, a so-called shortest lateral fluid distance (SLFD) point-pressure correlation
scheme was utilized, enabling an analytical approximation for Kij;y (see the next section and also
Refs. [1,10,16]). Here, however, an experimental determination of Kij;y will be made and
contrasted with the previous SLFD scheme.
Shown in Fig. 4 are measurements of 8Sfifi

=ðr2U3DhD2Þ at two different Reynolds numbers in
the fully developed flow regime of a square array of eight stationary cylinders (see Fig. 2 and
Ref. [3]). Approximating analytical curves have been fitted to the data. Due to cross-sectional
geometric symmetry, the direction of fi is arbitrary in this bundle with respect to the quantity
measured (see Appendix B). Furthermore, by reason of Appendix B, on the same cylinder,
the real function Kij;y ¼ 0 when iaj: Inter-cylinder excitation correlations are also negligible in
this example [3]. Hence, in general, for all cylinders, Kij;yC0; iaj; and the applicable
analytical equation for the response is Eq. (4). The analytical approximation of the data in
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Table 3

Estimates of bs corresponding to wall-pressure data from the literature

Reference (d0 ¼ 1; a0 ¼ a0 [of Eq. (10f)]) bs Range Variation

Clinch [20] 12.0 1:25pfDh=Up2:5 74:0
Ohlmer et al. [25,17] 12.0 0:25pfDh=Up2:0 76:0
Curling and Paidoussis [3,6,26] 2.94 0:25pfDh=Up3:0 þ1:0

�0:2
Lin et al. [21], Mulcahy et al. [22] 0.6 0:5pfDh=Up3:0 70:5
Bakewell et al. [18] 0.6 0:5pfDh=Up2:5 70:1
Gagnon (unpublished) 0.5 0:25pfDh=Up3:0 70:4

12 In pipe and annular flows,
ffiffiffiffiffiffiffiffiffi
Kij;y

p
is related to Reavis’ and Gorman’s effective rod diameter [7,8]. It is a

generalization of their ‘‘effective diameter ratio’’ for cylinder clusters.
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Fig. 4 is given by

8Sff 	 Re

r2U3DhD2
C7000 exp �10:13

fDh

U

� �0:09
" #

þ 17 000 exp �11:18
fDh

U

� �0:07
" #

;
fDh

U
X0:25: ð16Þ

This is applicable for Re ¼ 6800–48 000 and D=Dh ¼ 2:095 [see footnote at Eq. (10a)]. Also, for
this data we note [3,6] that bs ¼ 2:94 and c ¼ 0:322 (using D=Dh ¼ 2:095 in Eq. (10a)).13 Thus,
invoking Eqs. (15) and (10b), we obtain

Kij;yC 22 950 exp �10:13
fDh

U

� �0:09
" #

þ 55 740 exp �11:18
fDh

U

� �0:07
" #

;

i ¼ j ¼ 1; 2;y; 2K ; fDh=UX0:25

C 0; iaj: ð17aÞ

From Fig. 4, a margin of error of approximately 30% can be estimated. Note the applicable
frequency range, fDh=UX0:25: The unspecified low frequency range from 0 to 0.25 will be treated
as follows. First, Eq. (14) can, in principle, be evaluated at zero frequency, reasoning as follows. If
there is no sensible lateral variation of static pressure throughout the bundle, diametrically
opposing static pressures acting on the surface of a cylinder will be equal in magnitude and
opposite in direction. The differential static component of wall-pressure will therefore equal zero.
Consequently, in an infinitesimal frequency band at zero frequency the differential wall-pressure
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Fig. 4. Approximation of measured force-per-unit-length PSDs by Eq. (16). Data obtained in the bundle arrangement

shown in Fig. 2 near mid-cylinder ðx=L ¼ 0:494Þ in the directions f ¼ 01 and 901; at two different Reynolds numbers, as
shown. Different symbols are for the different f and Re from two separate tests for repeatability; see Refs. [3,26].

13 In Refs. [3,6], bsc
2 ¼ 0:305; hence the value given here for bs: Also, depending on the explicit forms of the functions

b; a; etc., or alternatively, the analytical expressions assumed for them, bs may be found to vary somewhat with

frequency and/or location in the bundle. In this case, it is relatively constant (see Fig. 3(b)).
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PSD will be zero.14 This leads to the conclusion that a0 ¼ 0 in Eq. (9b) for all values of y0 at
fDh=U ¼ 0; hence Eq. (14) evaluates to zero at fDh=U ¼ 0: For calculation purposes, a linear
variation (‘‘descent to zero’’) of LASDF is then assumed between fDh=U ¼ 0 and 0.25, and since
the gap, 0 to 0.25, is relatively small, this assumption should involve minimal error. Accordingly,

Kij;yC
Kij;yðfDh=U ¼ 0:25Þ

0:25
	

fDh

U
¼ 20:75

fDh

U
;

i ¼ j and 0pfDh=Uo0:25: ð17bÞ

The differential pressure LASDF, Kij;y; as quantified by Eqs. (17a) and (17b) is illustrated in
Fig. 5(a) where comparisons are also made to a previous approximation for the point pressure
LASDF, K 00

ij;y; obtained using pipe and annular flow pressure measurements (see the SLFD
correlation scheme later) and a ‘‘PSD-factored’’ differential pressure LASDF, K 0

ij;y (see Eq. (20b)
later).

4.2. The longitudinal spectral density factors (LOSDF) and final formulation of the response

Eqs. (11) and (13) are combined to yield

4Sfifj
ðx1;x2; f Þ

r2U3DhD2
¼

Sppðx0; y0; f Þ
r2U3Dhd0a0

Kij;y
fDh

U
;y

� �
g

fDh

U
;
%x

Dh

;y

� �
	 exp½�i2pf ðx2 � x1Þ=ðaUÞ�; i; j ¼ 1; 2;y; 2K ; ð18Þ

where x1 and x2 are dummy variables replacing x and x0; and %x ¼ x2 � x1: Recall that this
equation represents the fluid excitation forces acting on rigid, stationary cylinders. One now
invokes the quasi-static assumption where, if the vibration is sufficiently small, the excitation on
moving cylinders is approximately the same as that on corresponding stationary ones.
Substituting Eq. (18) into Eq. (3) written in terms of f ¼ O=2p; one obtains

4d0a0SZiZj
ðx; x0; f Þ

D2Sppðx0; y0; f Þ
¼
XN

c¼1

XN

n¼1

fcðxÞfnðx
0Þ
X2KN

p¼1

X2KN

q¼1

Hn

bðc;iÞ;pðf ÞHbðn;jÞ;qðf Þ

	 KbðpÞbðqÞ;y
fDh

U
;y

� �
KaðpÞaðqÞ;x

fDh

U
;y

� �
; i; j ¼ 1; 2;y; 2K ; ð19aÞ
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14Alternatively, it can be stated that we are concerned only with dynamic differential pressures. Therefore, the static

component can be neglected. Nevertheless, it is to be emphasized that the ‘‘zero-frequency/zero-PSD’’ assumption

depends on the static pressure balancing out in the differential pressure measurements, as stated from the outset.

Moreover, under this condition, the same conclusion can be reached in a different way, as follows. In terms of point

pressure PSDs and CSDs, the differential pressure PSD can be written as [26] Gpp ¼ Gðp1�p2Þðp1�p2Þ ¼ ðGp1p1 þ Gp2p2 Þ �
ðGp1p2 þ Gp2p1 Þ; where p1 and p2 are diametrically opposed point pressures. Two facts should be noted. First, there is no

convection of disturbances laterally. Hence, in a lateral plane the CSD is real (i.e., not complex) and Gp1p2 ¼ jGp1p2 j ¼
Gp2p1 ¼ jGp2p1 j: Second, at zero frequency, or more precisely, in an infinitesimal frequency band at zero frequency, the

point static pressure is, by definition, fully coherent around and along the cylinder (this is corroborated by the fact that

point pressure measurements of b and g all tend to 1.0 as frequency tends to zero—see Eqs. (21b) and (21c) later).

Together these two facts imply that Gp1p2 ¼ Gp2p1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Gp1p1

p ffiffiffiffiffiffiffiffiffiffiffi
Gp2p2

p
in the above at zero frequency, and leads to the

factorization, Gpp ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
Gp1p1

p
�

ffiffiffiffiffiffiffiffiffiffiffi
Gp2p2

p
Þ2: When the static pressure balances diametrically, Gp1p1 ¼ Gp2p2 ; and hence

Gpp ¼ 0 at zero frequency.

Ll.R. Curling, M.P. Pa.ıdoussis / Journal of Sound and Vibration 264 (2003) 795–833808



where

KaðpÞaðqÞ;x
fDh

U
;y

� �
¼
Z L

0

dx1

Z L

0

dx2 faðpÞðx1ÞfaðqÞðx2Þg
fDh

U
;
x2 � x1

U
;y

� �
	 exp½�i2pf ðx2 � x1Þ=ðaUÞ�; aðpÞ; aðqÞ ¼ 1; 2;y;N: ð19bÞ
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Fig. 5. (a) LASDF versus reduced frequency for the same cylinder ðr ¼ sÞ; with i ¼ j; by the empirical and SLFD

correlation schemes: ——, empirical scheme, Kij;y; Eqs. (17a) and (17b), and S ¼ fDh=U ; ?; empirical scheme, K 0
ij;y;

Eq. (20b) and S ¼ fDh=U ; � � �; SLFD scheme, K 00
ij;y; Eq. (23a) and S ¼ fD= %Uc: (b) LASDF versus reduced

frequency for different cylinders ðrasÞ by the SLFD scheme [K 00
ij;y; represented by Jzrs and Jyrs; Eq. (23a)]: ——,

ers ¼ 2; � � �; ers ¼ 3; ?; ers ¼ 6:
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These quantities ðKaðpÞaðqÞ;xÞ are defined collectively as the longitudinal spectral density factors
(LOSDF) [1,10], elsewhere also called ‘‘acceptance’’ [27]. In keeping with the nomenclature of
Reavis [7] and Gorman [8], when aðpÞ ¼ aðqÞ ¼ 1; the real part of Eq. (19b) reduces to L2C2

L;
where CL refers to the ratio of an effective rod length to actual rod length (obtained by factoring
out L2 from the integration—see Appendix C). Eq. (19b) is a generalization of the ‘‘effective rod
length’’ for cylinder clusters. Details of the evaluation of KaðpÞaðqÞ;x; when g is an exponential
function as it is here when the minute effects of y are neglected (i.e., set fs ¼ 0 in Eq. (10c)), and
the faðpÞ’s are the Euler–Bernoulli beam eigenfunctions, can be found in Refs. [10,14] and to some
extent in Refs. [7,28]. See Appendix C for a summary. Since low-frequency effects ðfDh=Uo0:25Þ
have already been accounted for by Kij;y; the range of g (i.e., Eq. (10c)) and hence Kcn;x will be
extended in the calculations to fDh=U ¼ 0; noting that g should in any case tend to 1.0 as f tends
to zero. A similar rationale applies to %UcðysÞ (Eq. (10e)).

4.3. An alternative formulation of the response

By repositioning d0a0; Eq. (19a) can obviously be alternatively written as

4SZiZj
ðx;x0; f Þ

D2Sppðx0; y0; f Þ
¼
XN

c¼1

XN

n¼1

fcðxÞfnðx
0Þ
X2KN

p¼1

X2KN

q¼1

Hn

bðc;iÞ;pðf ÞHbðn;jÞ;qðf ÞK 0
bðpÞbðqÞ;y

fDh

U
;y

� �

	 KaðpÞaðqÞ;x
fDh

U
;y

� �
; i; j ¼ 1; 2;y;K ; ð20aÞ

where

K 0
bðpÞbðqÞ;y

fDh

U
;y

� �
¼

KbðpÞbðqÞ;yðfDh=U ;yÞ
d0a0

; ð20bÞ

a ‘‘normalized’’ LASDF, and KaðpÞaðqÞ;xðfDh=U ;yÞ is the same as before. Both expressions (19a)
and (20a) have merit. In the first, the ‘‘normalized’’ wall-pressure PSD, Sppðx0; y0; f Þ=d0a0; is
independent of d0a0 and therefore is transferable between systems with different d0a0
characteristics, while Kij;y is dependent on d0a0 and is therefore not transferable. In the second,
Sppðx0; y0; f Þ is dependent on d0a0 and is not transferable, while the ‘‘normalized’’ LASDF, K 0

ij;y;
does not depend on d0a0 and therefore is a bit more transferable than the ‘‘unnormalized’’
LASDF.15 This will be borne out in the sample calculations presented later. K 0

ij;y is shown
graphically in Fig. 5(a), for d0 ¼ 1 and a0 given by Eq. (10d) with fr ¼ 0 [i.e., a0 is given by
Eq. (10f)].16
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15 In other words, for two different bundles, the assumption is that the normalized quantities, K 0
ij;y and

Sppðx0; y0; f Þ=d0a0; are the same in both, whereas the unnormalized quantities, Kij;y and Sppðx0; y0; f Þ; may be different
in both. Unfortunately, the two normalized quantities cannot be used simultaneously, therefore the choice has to be

made between normalizing the PSD and normalizing the LASDF. The sample calculations explore both choices.
16As in Eqs. (17a) and (17b), K 0

ij;y ¼ 0 when iaj; for the eight-cylinder system under consideration.
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5. The SLFD wall-pressure and force-per-unit length CSDs

5.1. Point pressure correlations and CSDs

The shortest lateral fluid distance (SLFD) force-per-unit-length CSDs of a previous study [1,14]
stem from single-cylinder and pipe-flow, point17 wall-pressure correlation measurements
[18–20,22,29] and, an assumed inter-cylinder point wall-pressure correlation scheme [1,10,16].
In a single-cylinder system, measurements have shown that point wall-pressure correlations
between two different points in a lateral plane on the cylinder decay in strength with the shortest
distance between the two points around the circumference of the cylinder. Measurements of
lateral point wall-pressure correlations being unavailable for bundles of cylinders at the time of
developing this model of the correlations, the assumption was made that, in a bundle, the point
wall-pressure correlations on stationary cylinders between any two points in a lateral plane decay
in strength with the shortest lateral distance through the fluid between the two points. Thus, the
lateral decay function for points on the same (stationary) cylinder is taken in the model to be that
of the single-cylinder (annular flow) measurements, which are similar to and hence approximated
by those measured in pipe flow [7,8,10,17–20,22,28–31]. The lateral decay function for points on
different (stationary) cylinders in the bundle is taken to be of the same form as that measured
around the circumference of a single cylinder or inner pipe wall, but having the distances around
the cylinder walls and shortest extension out into the fluid from a point on one cylinder to a point
on the next as the spatial separation parameter. This is done without regard for the presence of
obstructions, such as other cylinders, along the shortest path through the fluid, for the sake of
simplicity. This simplification has negligible impact on the cylinder vibration calculations if inter-
cylinder correlations beyond the nearest neighbouring cylinders are negligible, which is indeed the
case in the set of empirical correlations given in the previous section of this paper, in which all
inter-cylinder wall-pressure correlations are negligible.
Wall-pressure correlations in the longitudinal direction on cylinders in a bundle are taken to be

the same as those measured in the longitudinal direction on a single cylinder (annular flow) and in
pipe flow. Thus, the pressure field in annular and pipe-flow systems being characteristically
homogeneous, the bundle-flow longitudinal correlations are assumed to be the same in all
longitudinal planes on all cylinders in the bundle, which is a reasonable approximation in the light
of the preceding empirical longitudinal correlations, where the effects of fs (azimuthal co-
ordinate) on the longitudinal correlation functions, g and %Uc are small [see Eqs. (10c) and (10e)].
Correlation decay in oblique directions, whether between points on the same cylinder in the
bundle or between points on different cylinders, is represented by the product of the lateral and
longitudinal decay functions. (This independent-planes model of the pressure field for
oblique directions was first suggested by Corcos [32] based on existing measurements and is
justified analytically here in Appendix D.) Putting all of this together, the SLFD wall-pressure
CSD for point pressures in the cylinder bundle in the fully developed flow region can be written as
[1,10,16]

Sprps
ðx;x0; yr; ys; f ÞCSppðf ÞbðSyÞgðSxÞe�i2pSx ; ð21aÞ

ARTICLE IN PRESS

17 ‘‘Point’’ as opposed to ‘‘differential’’, as discussed in the preceding.
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where, using the Bakewell [18] and Bakewell [19] pipe-flow correlation functions,

bðSyÞ ¼ ð1þ cS2
yÞ

�1½2� expð�dS2
yÞ�

�1; ð21bÞ

gðSxÞ ¼ expð�bjSxjÞ; ð21cÞ

Sx ¼
f ðx0 � xÞ

%Uc

; Sy ¼
fLminðyr; ysÞ

%Uc

; ð21dÞ

100 000pRep300 000; D=Dh-0:

Lminðyr; ysÞ is the shortest lateral fluid distance between the points ðx; yrÞ and (x0; ysÞ: %Uc; the
average, frequency-dependent pressure disturbance convection velocity between x and x0; is
independent of lateral co-ordinates (a characteristic of pipe and annular flows—taken here as
being equal to the bulk channel flow velocity U for the frequency range of interest [14,16]—cf.
Eq. (10e)), the constants ðb; c; dÞ ¼ ð0:7; 10; 80Þ and Sppðf Þ is the point reference or ‘‘signature’’
wall-pressure PSD of the system similar to its differential counterpart discussed earlier. Note that
Sppðf Þ corresponds to 1

2
Sppðx0; y0; f Þ (Eq. (9a)) discussed earlier18 and is invariant with y0; as the

correlation functions in this scheme were derived from pipe and annular flow correlations where
the pressure field is characteristically homogeneous with respect to lateral co-ordinate, y: Note
that bðSyÞ tends to unity as the reduced frequency Sy tends to zero, as expected [see footnote
preceding Eq. (17b)]. This model of the pressure field is ‘‘exact’’ for a single-cylinder annular-flow
system, wherein inter-cylinder correlations become irrelevant. It is used here in bundles of
cylinders for comparison purposes and as a guide to the development of a more elaborate
empirical model for bundles. Accordingly, Eq. (21a) is to be compared to Eq. (9a). In Eq. (9a), the
generalizations from fully developed, homogeneous, pipe and annular flows, required by bundle
flows (i.e., clusters of cylinders), are evident. The form of Eq. (9a) reduces to that of Eq. (21a) for
a fully developed flow around a single-cylinder system, as it should.

5.2. Point pressure LASDF and LOSDF, and the SLFD formulation of the response

The operations required by Eq. (8) for point pressures integrated completely around the
cylinders ðyr; ys from 0 to 2pÞ can be carried out using the above SLFD point pressure correlation
scheme (Eqs. (21a)–(21d)) and the result utilized in Eq. (3), under the quasi-static assumption, to
yield an equation similar to Eqs. (19a) and (20a), i.e.,

4SZiZj
ðx; x0; f Þ

D2Sppðf Þ
¼
XN

c¼1

XN

n¼1

fcðxÞfnðx
0Þ
X2KN

p¼1

X2KN

q¼1

Hn

y
HyK 00

y;yK
00
y;x; ð22aÞ

where, the missing subscripts being the same as in Eq. (19a),

K 00
ij;y ¼

Z 2p

0

Z 2p

0

bðSyÞTrigiðyrÞTrigjðysÞ dyr dys; i; j ¼ 1; 2;y2K ð22bÞ
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18Assuming that it is valid to take differential PSDs as being twice the corresponding point PSDs [3,14].
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(this is the point pressure LASDF—cf. Eq. (14)) and

K 00
cn;x ¼

Z L

0

Z L

0

fcðxÞfnðx
0ÞgðSxÞ e�i2pSx dx dx0; c; n ¼ 1; 2;y;N ð22cÞ

(this is the point pressure LOSDF—cf. Eq. (19b)). Numerically evaluating Eq. (22b), coupled with
Eq. (21b), and curve fitting the result yields the following analytical approximation for the point
pressure LASDF [10,14,16]:

K 00
ij;yC

a1jSRj
ð1þ a2S

2
RÞ

ð1þ e�a3jSRjÞ if rðiÞ ¼ sðjÞ and i ¼ j

¼ 0 if rðiÞ ¼ sðjÞ and iaj

CTrigiðCrsÞTrigjðCrsÞJzrs þ ½Nij � TrigiðCrsÞTrigjðCrsÞ�Jyrs if rðiÞasðjÞ; ð23aÞ

where r; s ¼ rðiÞ; sðjÞ and Trigi are defined in Eq. (8), SR ¼ fR= %Uc; the angleCrs is defined in Fig. 1,
and where

Nij ¼
1 ðboth i and jpKÞ or ðboth i and j > KÞ;

0 otherwise;

(
ð23bÞ

ða1; a2; a3Þ ¼ ð38:344; 40:611; 19:091Þ; ð23cÞ

Jzrs ¼
b1ec1

rs jSRj
ð1þ b2e

c2
rs S2

RÞ
ð1þ e�b3jSR jÞ ð23dÞ

with

ðb1; b2; b3Þ ¼ ð�33:795; 44:342; 0:06283Þ; ðc1; c2Þ ¼ ð�1:7348; 0:62895Þ: ð23eÞ

Jyrs is similar to Jzrs but with the constants

ðb1; b2; b3Þ ¼ ð52:183; 140:666; 0:03942Þ; ðc1; c2Þ ¼ ð�1:3449; 1:2100Þ; ð23fÞ

ers ¼ Rrs=R; ð23gÞ

where Rrs is the distance between centres of cylinders r and s; and R ¼ D=2; cylinder radius.
K 00

ij;y as given above is valid for �50pSRp50 and 2persp6: Components of the point pressure
K 00

ij;y by the SLFD scheme are illustrated in Figs. 5(a) and (b), where a comparison is also made in
Fig. 5(a) to the empirical differential schemes discussed earlier.
The LOSDF, K 00

cn;x; are of the same form as given previously (Eq. (19b) with a ¼ 1;U ¼ %Uc).
Examples of the evaluated integrals for LOSDF can be found in Refs. [10,14] and to some extent
in Refs. [7,28]. See Appendix C for a summary.
The similarities among the response equations (19a), (20a) and (22a) are to be particularly

noted. The only significant differences lie in the use of point or differential wall-pressure schemes
and the interpretations and characterizations of the wall-pressure PSD and the lateral and
longitudinal spectral density factors.
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6. The single-cylinder stochastic response equation

Considering annular flows ði; j ¼ 1; 2Þ; simplifying to the first mode and assuming no fluid
coupling between the two degrees of freedom (i.e., zero eccentricity), Eq. (19a) reduces
significantly to

SZ1Z1ðx; x
0; f Þ ¼

D2Sppðx0; y0; f Þ
4d0a0

f1ðxÞf1ðx
0ÞHn

11ðf ÞH11ðf ÞK11;yðf ÞK11;xðf Þ: ð24Þ

This also follows from Eqs. (7), (18) and (19b). An equation like this has been derived by
Thomson [9].
This equation can also be written in terms of K 0

11;y (see Eqs. (20a) and (b)), as well as
Sppðx0; y0; f Þ;K 00

11;y and K 00
11;x (see Eqs. (22a)–(22c)). The latter form, using different terminology

from the above, has been derived and utilized previously by Reavis [7] and Gorman [8].

7. Sample calculations of the cylinder response spectra

Sample calculations are presented for the response of the four-cylinder system ðK ¼ 4Þ
described in Ref. [16] and shown here in cross-section in Fig. 6. Measurements of the response of
this system are available for comparison with theory. The system has clamped–clamped boundary
conditions, r ¼ 1000 kg=m3; m ¼ 0:00101 Ns=m2; D ¼ 25:3 mm; Dh ¼ 128:6 mm; m ¼
0:577 kg=m; L ¼ 470 mm; E ¼ 2780 kPa; and Gc ¼ 0:75; these parameters are, respectively, the
fluid density, viscosity, cylinder diameter, hydraulic diameter, cylinder mass per unit length, cylinder
length, modulus of elasticity and smallest inter-cylinder gap divided by cylinder radius. From
unpublished data by Gagnon, bs for this system is approximately 0:570:4 (see Fig. 3(b) and Table 3).
The response will be determined at flow velocity U ¼ 2:13 m=s; or non-dimensionally, u ¼ 3:0 [16].19

7.1. The response using Eq. (19a)

The differential wall-pressure PSD is given by Eq. (9b) which, using Eqs. (10a) and (10b), reduces to

Sppðx0; y0; f ÞC1
2

bsrmU2d0a0½1þ ðD=DhÞ
1:25��1:8: ð25Þ

Inserting the values for the K ¼ 4 system described above, this becomes

Sppðx0; y0; f Þ
d0a0

C9:153	 10�7 kPa2=Hz: ð26Þ

Using this in Eq. (19a), the response PSDs and CSDs, SZiZj
ðyÞ=D2; of mid-cylinder displacements

were calculated on the computer.20 The results, plotted versus reduced (or scaled) frequency o; are
shown in Figs. 7 and 8. o (measured in rad) is related to frequency f ¼ O=2p (Hz) by the equation

o ¼ 2pL2½ðm þ rAÞ=EI �1=2 f ¼ 6:1016f ; ð27aÞ
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19Re for this example is approximately 270 000—well beyond the range of the empirical expressions of Sections 3 and

4 but not outside that of the expressions of Section 5. Additionally D=Dh ¼ 0:197; compared to 2.095 for some of the

expressions of Sections 3 and 4, and 0.0 for the pipe-flow based expressions of Section 5.
20As stated earlier, these calculations neglect the developing part of the flow, characterized by dðfDh=U ;yÞ:
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where I is the area moment of inertia of the cylinder ð¼ pD4=64Þ: The CSDs are shown in the form of
coherences, i.e., jCSD1;2j

2=ðPSD1 	 PSD2Þ; and phases. Conforming with the definitions used in Ref.
[16], the PSDs are shown as

G0
Z1Z1

¼
O
2po

GZ1Z1 ¼
O
po

SZ1Z1 ; ð27bÞ

where SZ1Z1 is defined by Eq. (3).21

Experimental measurements of the response by Gagnon and Pa.ıdoussis [16] are also shown in
Figs. 7 and 8 for comparison with the theoretical response. While experimental and theoretical
coherences tend to agree very well (Fig. 8—(see also Refs. [1,2,16]), the theoretical PSDs (Fig. 7)
clearly overestimate the experimental ones at the important first mode frequencies, by factors
exceeding 20, too great for practical use. This large discrepancy could possibly be attributed to a
number of reasons, including but not limited to the following: (1) the specific dependence of Kij;y

on the system (mainly its cross-sectional geometric configuration) in which it was measured, (2)
the wide margin of error associated with bsð780%Þ; and (3) the differences in Re and D=Dh

between the excitation used in the theory ðRe ¼ 6800–48 000; D=Dh ¼ 2:095Þ and the experimental
four-cylinder system ðRe ¼ 270000; D=Dh ¼ 0:197Þ:22 The foregoing calculations attempted to
transfer Kij;y from a densely populated eight-cylinder bundle (Fig. 2) to the more sparsely
populated four-cylinder one (Fig. 6). The inapplicability of Kij;y to the four-cylinder bundle and
large error in bs have contributed to the large differences in the theoretical and experimental
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Radial 
direction

Tangential
direction 

Fig. 6. Cross-section of the four-cylinder system used in experiments [16] for which the sample calculations of Section 7

were made. Radial and tangential directions are defined.

21 In contrast to Eq. (3), the definition used in the non-dimensional version of the theory is

RZiZj
=D2 ¼ ð1=2pÞ

R
N

�N
ðS00

ZiZj
=D2Þ expðio%tÞ do [1,10]. The link between this and Eq. (3) is the constant ratio, O=o;

giving S00 ¼ ðO=oÞS: In Ref. [16], an additional factor of 2p was employed for the one-sided spectrum, G0 ¼ 2S0; giving
G0 ¼ ð1=2pÞG00 ¼ ð1=pÞS00 ¼ ðO=poÞS:

22A quick sketch of c2ðD=DhÞ vs D=Dh illustrates how significantly D=Dh affects the wall-pressure PSD at large D=Dh:
Since the empirical expressions of Section 3 were obtained only at a single value of D=Dhð¼ 2:095Þ we still do not know
whether changing D=Dh also significantly affects the remaining parts of the excitation. Specifically, g; %Uc-Kln;x and

a; b-Kij;y:

Ll.R. Curling, M.P. Pa.ıdoussis / Journal of Sound and Vibration 264 (2003) 795–833 815



response PSDs. Eq. (20a) will offer an improvement in this regard. The other factors can be
alleviated through further empirical research.

7.2. The response using Eq. (20a)

The response of the same four-cylinder system at the same flow velocity ðu ¼ 3:0Þ; as in the
preceding section, is calculated using Eq. (20a), for comparison with that using Eq. (19a). The
differential wall-pressure PSD is in principle again given by Eq. (25); however, this time d0a0 must

ARTICLE IN PRESS

Fig. 7. Comparison of theoretical (Eq. (19a)) and experimental [16] PSDs of mid-cylinder displacements in the four-

cylinder system of Fig. 6 at u ¼ 3:0 in two different directions: (a) radial direction; (b) tangential direction. The

frequency range spans the first and second mode frequency groups. The scales on the left ð	10�6Þ are for the first mode
frequency group ðo11;o12;y;o18Þ while those on the right (also 	10�6) are for the second mode group

ðo21;o22;y;o28Þ: N.B.: G0
Z1Z1

¼ ðO=2poÞGZ1Z1 ¼ ðO=poÞSZ1Z1 [1,10,16].
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be determined for the system. This is done implicitly by utilizing an in situ measurement of SppðyÞ
at u ¼ 3:0:23 The in situ PSD (unpublished data by Gagnon) was measured at mid-longitudinal
location in the ‘‘tangential’’ direction on one of the four cylinders in the system. In the frequency
range of interest, it is given approximately by the following:

Sppðf ÞC7:5	 10�8f kPa2=Hz;

0pfp12:5 Hz or 0pfDh=Up0:76 cycles or 0pop76:27 rad: ð28Þ

Utilizing this in Eq. (20a) the mid-cylinder response PSDs and CSDs were calculated on the
computer as previously. Qualitatively, the comparison between theory and experiment is as good
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Fig. 8. Comparison of theoretical (Eq. (19a)) and experimental [16] coherences and phases between an adjacent pair of

radial-direction, mid-cylinder displacements in the four-cylinder system of Fig. 6 at u ¼ 3:0; corresponding to Fig. 7.

23An in situ measurement of SppðyÞ also corrects the 780% uncertainty in bs:
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as previously. However, this time, quantitative agreement between the theoretical and experimental
response PSDs, in the important first mode group of frequencies,24 is much better than before, as
seen from the results given in Table 4. This improvement has resulted from the use of the in situ
differential wall-pressure PSD (i.e., implicitly, in situ a0 and bs) instead of Eq. (25) as is, and the
greater versatility of K 0

ij;y as compared to its counterpart, Kij;y (see the footnote in Section 4.3).
Based on observed margins of error in the experimental measurements of the quantities needed

to calculate the theoretical response, an expected overall discrepancy factor of the order of 2.0
could be estimated.25 Note that the values of the first-mode PSD peaks in Table 4, by the theory of
Eq. (20a), are ‘‘almost’’ within this factor of 2.0 from the experimental first-mode peaks
(discrepancy range: 2.11 to 6.25; cf. the range of 19.4–32.5 for the results via Eq. (19a)).

7.3. The response using Eq. (22a)

These last sample calculations of the four-cylinder system response make use of the SLFD
scheme described in Section 5. The SLFD response is given by Eq. (22a), which requires the point
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Table 4

Comparison of the major peaks (magnitudes at modal frequencies) of the experimental PSDs in Fig. 7 with theory at

u ¼ 3:0

Direction 451 (radial) Direction 1351 (tangential)

First mode frequencies Second mode frequencies First mode frequencies Second mode frequencies

o11 o15 ¼ o16 o21 o25 ¼ o26 o13 ¼ o14 o18 o22 o28

E16 E24 E53 E68 E21 E28 E57 E74

Experiment [16] 1:8	 10�6 2:4	 10�6 6:5	 10�8 2:5	 10�8 3:0	 10�6 0:8	 10�6 6:25	 10�8 1:4	 10�8

SLFD model 1:7	 10�6 2:2	 10�6 1:4	 10�8 0:75	 10�8 2:9	 10�6 0:4	 10�6 1:15	 10�8 0:18	 10�8

ðK 00
ij;yÞ; Eq. (22a)

Empirical model 3:8	 10�6 10:5	 10�6 2:75	 10�8 1:75	 10�8 9:5	 10�6 5:0	 10�6 2:6	 10�8 0:6	 10�8

ðK 0
ij;yÞ; Eq. (20a)

Empirical model 35	 10�6 67:5	 10�6 6:25	 10�8 2:9	 10�8 69	 10�6 26	 10�6 4:75	 10�8 0:75	 10�8

ðKij;yÞ; Eq. (19a)

Note: 1. The numbering system for oij is based on there being eight theoretical frequencies in each mode group [16].

Some frequencies are repeated, e.g., o15 ¼ o16: 2. The units of oij and the PSDs are rad and rad�1; respectively.

24The second and higher mode frequencies contribute insignificantly to the total response (see Fig. 7).
25The total error in the response calculation is an accumulation of errors of measurement in the PSD, LASDF,

LOSDF, plus other system errors. Assume a 10%maximum error in the PSD; that in the LASDF is of the order of 30%

(see Fig. 4); that in the LOSDF is taken to be the same as for the empirical differential wall-pressure CSDs (Eqs. (10a)–

(10g)), i.e., 20%; assume the remaining unaccounted-for errors amount to no more than 20%; finally, assume the

overall error is not very different from, or at least not smaller than, the average term-by-term error in the multiple

summations in Eqs. (19a), (20a) and (22a) (this effectively establishes a lower bound for the expected error). Given these

values and assumptions, the overall error ratio is expected to be no better than 1:10ðPSDÞ 	 1:30ðLASDF Þ 	
1:20ðLOSDF Þ 	 1:20ðother system errorsÞ ¼ 2:1:
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pressure PSD, Sppðf Þ: This is taken to be one-half the in situ differential pressure PSD given earlier
by Eq. (28).26

The mid-cylinder response PSDs and CSDs calculated on this basis, were again qualitatively
very similar to Figs. 7 and 8, the only significant differences occurring in the magnitudes of the
PSDs. Values of these, at the natural frequencies of the system, are given in Table 4, where
comparisons are made to the results of the empirical schemes used earlier, as well as experimental
measurements [16]. In the table it can be seen that the SLFD scheme compares better with
experiment than do any of the empirical schemes at the first mode frequencies. It is plausible that
this has occurred mainly for one or all of the following four reasons: (1) a judicious choice of the
tangential direction in which to obtain an approximation for Sppðf Þ (see previous footnote); (2) the
fact that the four-cylinder system is sparsely populated (Fig. 6) compared to the fully populated
eight-cylinder bundle (Fig. 2) from which Kij;y and K 0

ij;y were obtained; the sparse four-cylinder
system more closely ‘‘resembles’’ pipe- and annular-flow systems, with respect to K 00

ij;y; than does
the fully populated system, i.e., they have more ‘‘similar’’ values of D=Dh; thus, K 00

ij;y would appear
to have been more ‘‘reasonable’’ for this four-cylinder system than K 0

ij;y or Kij;y; (3) there is a closer
match of Re between the excitation in the SLFD theory and the experimental four-cylinder system
than in the previous two samples; and finally (4) the inclusion of the inter-cylinder wall-pressure
excitation CSDs in the SLFD model, however small, may have had a small but substantial,
cumulative effect on the result [1]. More research should be done to investigate these matters
further.
Finally, small discrepancies still remaining between theory and experiment can probably be

attributed in part to non-linear effects such as those excluded by the quasi-static assumption for
the excitation forces on the walls of the vibrating cylinders, in part to uncharacterized fluid flow
excitation in the developing part of the flow and in part to other limitations of the model [16].

8. Comparative computations of cylinder response spectra utilizing the full and reduced stochastic

equations

Shown in Table 5 are the times-of-computation ratios for the sample calculations of normalized
response spectra [defined in Eqs. (19a) and (22a)] using the full and reduced equations presented in
Section 2. The results show that significant savings can be achieved with the reduced equations
ð4Þ–(7), compared to using the full equation (3); e.g., from the table, the calculation of the
response PSD by the SLFD correlation scheme of Section 5 with three comparison functions
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26This is valid since, in the tangential direction of Fig. 6, the diametrically correlated components of the differential

pressure balance each other (by geometric symmetry), leaving only the uncorrelated components to contribute to

cylinder vibration, and the PSDs of the uncorrelated components are equal in magnitude (again by symmetry).

Specifically, if p1 and p2 are the uncorrelated components of pressure, then

Gpp ¼ ðGp1p1 þ Gp2p2 Þ � ðGp1p2 þ Gp2p1 Þ ¼ 2Gp1p1 ;

since Gp1p1 ¼ Gp2p2 (by symmetry) and Gp1p2 ¼ Gp2p1 ¼ 0 (uncorrelated). Note from Fig. 6 that the cross-sectional

geometry, while symmetric in the tangential direction, is not in others. Thus, the above may not be true in other

directions. Note, however, that it is true in all directions in a fully populated rectangular array of cylinders (see

Appendix B). The use of the tangential direction PSD in this example should therefore be viewed as a good

approximation for the ‘‘laterally homogeneous’’ Sppðf Þ in Eq. (22a).
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ðN ¼ 3Þ; using Eq. (3), the full equation, took 2.26 times as long as it did using Eq. (4), the
NOINTEC reduced equation, and 41.36 times as long as it did using Eq. (5a), the NOINTEC 1
reduced equation.

9. Conclusions

In the foregoing, stochastic equations of varying degrees of computational complexity and
efficiency for determining the random vibratory response of cylindrical structures have been
given, with application to cylinders subjected to turbulent axial flow. Analytical approximations
for the lateral fluid forcing functions have been presented, based on previous wall-pressure
measurements in a particular bundle of cylinders configured cross-sectionally in a square-array
pattern and a few other results pertaining to other set-ups from the literature [3,6–8,16–22,26].
The model of the excitation derived from these approximations was obtained for
6800pRep48 000 and D=Dh ¼ 2:095:
The generality of the present or any other similar force-field approximations for arbitrary

bundle configurations and test rigs remains to be more thoroughly investigated. Possible tools for
this kind of investigation include turbulence correlation length scales [6]. Also, it is to be
emphasized that the present data and all its implications strictly apply to excitation frequencies
above fDh=U of the order of 0.25. This resulted because of the absence of empirical data below
that point [3,6]. For the purpose of making sample calculations, certain logical assumptions (the
zero-frequency/zero-PSD assumption and a linear-descent- to-zero assumption) were necessary in
the region between fDh=U ¼ 0:0 and 0.25. The zero-frequency/zero-PSD assumption is based on
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Table 5

‘‘Times-of-computation’’ ratios— Eq. (3): Eq: y (for K ¼ 4; N ¼ 3)a for normalized response spectra

Eq: y

(4) (5a) (6a)b (7)b

SLFD correlation scheme (see Section 5:2)
Eq. (3)c (PSD Only) 2.26:1 41.36:1 35.02:1 186.76:1

(PSD+CSD) 3.89:1 97.23:1 n/a n/a

(CSD Only) 6.78:1 475.59:1 n/a n/a

Empirical correlation scheme (see Section 4:2)
Eq. (3)c (PSD only) 1.87:1 26.23:1 26.23:1 96.17:1

(PSD+CSD) 2.61:1 55.71:1 n/a n/a

(CSD only) 3.39:1 163.83:1 n/a n/a

A CSD calculation consists of the inter-cylinder spectral densities in the Cartesian directions (i.e., Sz1z2 ; Sy1y2 ; Sz1y2 and

Sy1z2 ) needed to calculate the inter-cylinder response CSDs of two pairs of cylinders in arbitrary polar directions [e.g.,

pairs ð1; 2Þ and ð1; 3Þ].
aN ¼ 1 for Eqs: ð5aÞ and (7)—see Table 1.
bEqs. (6a) and (7) are single-cylinder equations and cannot determine inter-cylinder response CSDs.
cA PSD calculation consists of the same-cylinder spectral densities in the Cartesian directions (i.e., Szz; Syy; and Szy)

needed to calculate the response PSD of a cylinder in an arbitrary polar direction.
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the fact that it can be accurately inferred that under the condition of balanced static pressure the
excitation PSD (of differential pressure), hence the CSD, is exactly zero at zero frequency, i.e., at
the static condition. The need for the second assumption, the linear approximation between
fDh=U ¼ 0 and 0.25, shows that more research is needed to determine the exact behaviour of the
phenomenon near ‘‘static’’ conditions—although, this gap being small, the error introduced by a
linear assumption would be minimal.
All in all, the present empirical approximations for characterization of the turbulent force field

on stationary cylinders may be summarized as follows. Indications are that the force field depends
fundamentally upon the following correlation parameters and functions: bs; a ‘‘quietness’’
function of proportionality (called a bundle system ‘‘constant’’); c; a confinement function; b; g;
lateral and longitudinal correlation decay functions, respectively; d; a pressure-field development
function; a; a wall-pressure PSD shape and azimuthal distribution function; P; a Reynolds-
number-dependent power function; %Uc; average wall-pressure disturbance convection velocity;
Kij;y; lateral spectral density factors (LASDF), and Kcn;x; longitudinal spectral density factors
(LOSDF).
These have been discussed in detail here and elsewhere in the literature [3,6,10,16,26]. Excluding

d; they have all been determined only in the fully developed part of the flow of the eight-cylinder
bundle mentioned in this paper [3,6]. More research needs to be conducted in the developing part
of the flow in this, as well as other, bundle configurations. Also, wider ranges of Re and D=Dh

need to be investigated.
The excitation CSD can be approximated by the product of the excitation PSD and lateral and

longitudinal correlation functions or factors as shown in Appendix D. By the reasoning of
Appendix D, this approximation will probably be more accurate for low frequencies and small
separation distances than for higher frequencies and larger separation distances. Fortunately, the
correlations tend to be insignificantly small at the higher frequencies and larger separation
distances, while most of the vibration occurs only at the lower frequencies. The separation of
planes into lateral and longitudinal parts is based on Corcos’ model of the turbulent wall-pressure
field [32], and has been used successfully in previous studies of this kind [1,7,8,16,23,24,27].
Subsequent analysis gives rise to the lateral and longitudinal spectral density factors as has been
discussed. The longitudinal spectral density factors involve double integrals over the lengths of the
cylinders, a summary of which, using complex variables and the Euler Bernoulli beam
eigenfunctions, is given in Appendix C for arbitrary cylinder boundary conditions.
Sample calculations were conducted for the response of a four-cylinder system using the

equations presented in this paper and the ‘‘quasi-static’’ excitation force-per-unit-length CSDs
that were developed. The theoretical results were compared to experimental results for the same
system found in the literature [16]. Those by Eq. (20a) compared much better with experiment
than those by Eq. (19a), showing the advantage of K 0

ij;y (normalized LASDF) over Kij;y

(unnormalized LASDF) in this case, both of which were determined from measurements of the
wall-pressure field in the eight-cylinder stationary bundle. The dependency of the former, K 0

ij;y; on
the eight-cylinder wall-pressure PSD shape function, a0; was removed through division or
‘‘normalization’’ by a0; making it more applicable to the four-cylinder bundle, which was
inherently (by reason of a different geometry) under the influence of a different wall-pressure PSD
shape function. In short, K 0

ij;y was more ‘‘transferable’’ in this example from one bundle
configuration to the other, than Kij;y; hence better results were obtained using K 0

ij;y: Additionally,
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the in situ wall-pressure PSD used in Eq. (20a) avoided estimation errors in bs: This also helped to
improve the results. An in situ PSD can be used in conjunction with Eq. (9b) in a given rig to
minimize the amount of wall-pressure PSD measurements necessary in the rig.
For comparison purposes, sample calculations involving K 00

ij;y; i.e., the SLFD scheme given by
Eq. (22a), were also made. Results agreed with experiment even better than those using K 0

ij;y; for
the same four-cylinder system. Four possible explanations for this were given. First, the four-
cylinder system, with its greater regions of ‘‘open space’’, more closely ‘‘resembles’’ the pipe- and
annular-flow systems upon which the SLFD correlation scheme is based (i.e., they have ‘‘similar’’
D=Dh), than does the more densely populated 8-cylinder system from which Kij;y and K 0

ij;y were
determined. Second, the improved agreement between theory and experiment could be due in part
to the cumulative effects of inter-cylinder wall-pressure excitation CSDs, however small, and their
inclusion in the SLFD model [1]. Third, the choice of the tangential direction wall-pressure PSD,
and not any other direction PSD, to approximate Sppðf Þ in Eq. (22a) could also have favourably
impacted on the results. Fourth and last, the range of Re over which the SLFD correlation scheme
was obtained contains the Re at which the experimental four-cylinder response was measured and
therefore it is probably more valid for the four-cylinder system than the empirical schemes
involving Kij;y and K 0

ij;y which were obtained at much lower Re:
More research is needed to resolve and further explain these matters. The effect of cylinder

motion on the excitation force field should also be researched, so that larger-amplitude vibrations
could be studied (i.e., higher flow velocities). Moreover, the analytical characterization of the wall-
pressure excitation will benefit greatly from research into the structure of wall-bounded turbulent
flow [33].
Finally, this paper also shows that significant savings, in terms of computational efficiency,

can be achieved when computing the cylinder response spectra by utilizing simplified or
reduced versions of the full equation for cylinder vibration in a bundle of cylinders. This has
implications for value-engineering design of large systems based on differing cylinder bundle
configurations.
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Appendix A. Derivation of Eqs: (3)–(5)

A.1. Eq. (3)

The displacement vector, gðx; tÞ (Eq. (2)) is expanded in a series of Galerkin comparison
functions,

gðx; tÞ ¼
XN

n¼1

fnðxÞqnðtÞ; ðA:1Þ
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where fnðxÞ are the comparison functions satisfying the boundary conditions of the problem and
qn ¼ fqn1 ; qn2 ;y; qn2K

gT; the nth generalized vector corresponding to the displacement vector,
g ¼ fZ1; Z2;y; Z2Kg

T:
Eq. (1) is then written as

XN

n¼1

½MðxÞfnðxÞ.qnðtÞ þ CðxÞfnðxÞ’qnðtÞ þ KðxÞfnðxÞqnðtÞ� ¼ fðx; tÞ; ðA:2Þ

where fðx; tÞ ¼ ffzðx; tÞ; fyðx; tÞg
T:

Multiplying by the weighting function, Wn0 ðxÞ; and integrating over x to eliminate the space
variable, this becomes

XN

n¼1

Z L

0

½Wn0 ðxÞMðxÞfnðxÞ.qnðtÞ þ Wn0 ðxÞCðxÞfnðxÞ’qnðtÞ þ Wn0 ðxÞKðxÞfnðxÞqnðtÞ� dx

¼
Z L

0

Wn0 ðxÞfðx; tÞ dx; n0 ¼ 1; 2;y;N; ðA:3aÞ

or in matrix form

½M�.qþ ½C�’qþ ½K�q ¼ fðtÞ; ðA:3bÞ

where

½M� ¼

½m101� ½m102� y ½m10N �

½m201� ½m202� y ½m20N �

^ ^ ^

½mN 01� ½mN 02� y ½mN 0N �

2
6664

3
7775; ½mn0n� ¼

Z L

0

Wn0Mfn dx; ðA:3cÞ

½C� ¼

½c101� ½c102� y ½c10N �

½c201� ½c202� y ½c20N �

^ ^ ^

½cN 01� ½cN 02� y ½cN 0N �

2
6664

3
7775; ½cn0n� ¼

Z L

0

Wn0Cfn dx; ðA:3dÞ

½K� ¼

½k101� ½k102� y ½k10N �

½k201� ½k202� y ½k20N �

^ ^ ^

½kN 01� ½kN 02� y ½kN 0N �

2
6664

3
7775; ½kn0n� ¼

Z L

0

Wn0Kfn dx; ðA:3eÞ

q ¼ fq1; q2;y; qng
T ðA:3fÞ

and

fðtÞ ¼
Z L

0

fW1fðx; tÞ;W2fðx; tÞ;y;WNfðx; tÞg
T dx: ðA:3gÞ
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Taking the finite Fourier transform of Eq. (A.3b) and retaining only the steady state producing
terms yields [see Eqs. (A.10a) and (10b)]

½�O2½M� þ iO½C� þ ½K ��QðO;TÞ ¼ FðO;TÞ; ðA:4aÞ

where

QðO;TÞ ¼
Z T

0

qðtÞe�iOt dt; ðA:4bÞ

FðO;TÞ ¼
Z T

0

fðtÞe�iOt dt: ðA:4cÞ

Solving (A.4a),

QðO;TÞ ¼ ½HðOÞ�FðO;TÞ; ðA:5aÞ

where the frequency response function matrix is defined as

½HðOÞ� ¼ ½�O2½M� þ iO½C� þ ½K ���1: ðA:5bÞ

Considering each element of QðO;TÞ more explicitly (using also Eqs. (A.4b), (A.4c) and (A.3g)),

QbðO;TÞ ¼
X2KN

q¼1

HbqðOÞFqðO;TÞ

¼
X2KN

q¼1

HbqðOÞ
Z L

0

WaðqÞðxÞFbðqÞðx;O;TÞ dx; ðA:5cÞ

where

FbðqÞðx;O;TÞ ¼
Z T

0

fbðqÞðx; tÞ e�iOt dt; fbðqÞðx; tÞ being the element of fðx; tÞ; ðA:5dÞ

aðqÞ ¼ largest integerpfð2K þ q � 1Þ=2Kg; changing from 1 to N as q goes from 1 to 2KN;

ðA:5eÞ

bðqÞ ¼ q � 2K ½aðqÞ � 1�; cycling repeatedly from 1 to 2K as q goes from 1 to 2KN: ðA:5fÞ

Rewriting Eq. (A.1) in elemental form,

Zjðx; tÞ ¼
XN

n¼1

fnðxÞq
j
nðtÞ: ðA:6Þ

Taking the finite Fourier transform of this gives

@jðx;O;TÞ ¼
XN

n¼1

fnðxÞQ
j
nðO;TÞ; ðA:7aÞ
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where

@jðx;O;TÞ ¼
Z T

0

Zjðx; tÞ e
�iOt dt; ðA:7bÞ

Qj
nðO;TÞ ¼

Z T

0

qj
nðtÞ e

�iOt dt: ðA:7cÞ

From the definition of qnðtÞ in Eq. (A.1) and q in Eq. (A.3f), we can write

Qj
nðO;TÞ ¼ Qbðn;jÞðO;TÞ; ðA:8aÞ

where

bðn; jÞ ¼ 2Kðn � 1Þ þ j: ðA:8bÞ

Substituting for Qj
nðO;TÞ in Eq. (A.7a), using Eqs. (A.8a), (A.8b) and (A.5c), gives

@jðx;O;TÞ ¼
XN

n¼1

fnðxÞ
X2KN

q¼1

Hbðn;jÞ;qðOÞ
Z L

0

WaðqÞðx1ÞFbðqÞðx1;O;TÞ dx1: ðA:9Þ

The response and excitation CSDs are now defined as [9]

SZiZj
ðx;x0;OÞ ¼ lim

T-N

1

T
@n

i ðx;O;TÞ@jðx0;O;TÞ; ðA:10aÞ

SfbðpÞfbðqÞ ðx1;x2;OÞ ¼ lim
T-N

1

T
Fn

bðpÞðx1;O;TÞFbðqÞðx2;O;TÞ ðA:10bÞ

with the corresponding cross-correlations,

RZiZj
ðx;x0; %tÞ ¼

1

2p

Z
N

�N

SZiZj
ðx; x0;OÞeiO%t dO; ðA:10cÞ

RfbðpÞfbðqÞ ðx1;x2; %tÞ ¼
1

2p

Z
N

�N

SfbðpÞfbðqÞ ðx1;x2;OÞeiO
%t dO: ðA:10dÞ

Then, by substituting Eq. (A.9) into Eq. (A.10a) and applying Eq. (A.10b), Eq. (3) of the main
text is obtained, having W ðxÞ ¼ fðxÞ:

A.2. Eq. (4)

Eq. (4) follows from Eq. (3) when

SfbðpÞfbðqÞ ðx1;x2;OÞ ¼ 0; bðpÞabðqÞ or bðqÞ þ K when bðqÞpK ;

bðpÞabðqÞ or bðqÞ � K ; when bðqÞ > K :
ðA:11Þ

This can be demonstrated by considering the components (or elements) of the generalized force-
per-unit-length CSD matrix that are non-zero according to the above condition. The indices (or
subscripts) q and n in Eq. (3) may then be redefined as the new subscripts q0 and n0 given in Eq. (4)
in order to accommodate or include those non-zero components and exclude these [Eq. (A.11)]
that are zero. The range of n0 must then be 1 to 2N to include all N modes in the two directions z

and y as indicated in Eq. (4).
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A.3. Eq: (5)

Eq. (5a) follows from Eq. (4) when N ¼ 1:

Appendix B. Properties of force-per-unit-length and cylinder displacement PSDs and CSDs for an

infinite square array based on geometric symmetry

The following Theorems 1–3, apply to cylinder vectors in general, i.e., to forces as well as
displacements.

Theorem 1. The PSD is the same all around a cylinder in a given lateral plane.

Proof. See Fig. 9. By symmetry

Gfy0 fy0
¼ Gfz0 fz0

; Gfy0 fz0
¼ �Gfy0 fz0

¼ 0

and

Gfz0 fy0
¼ �Gfz0 fy0

¼ 0:

Also by resolving vectors in the direction f;

ff ¼ fz0 cosfþ fy0 sinf:

Therefore,

Gffff ¼Gfz0 fz0
cos2 fþ ðGfz0 fy0

þ Gfy0 fz0
Þ cosf sin fþ Gfy0 fy0

sin2 f

¼Gfz0 fz0
¼ Gfy0 fy0

for all f:

Theorem 2. The inter-cylinder CSDs between the z and y directions shown are zero in a given lateral
plane.
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Fig. 9. Diagram used in the proof of Theorem 1 of Appendix B.
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Proof. See Fig. 10. By symmetry,

Gfz1
fy2

¼ Gfz1
ð�fy2

Þ ¼ �Gfz1
fy2

¼ 0; Gfz2
fy1

¼ Gfz2
ð�fy1

Þ ¼ �Gfz2
fy1

¼ 0:

Theorem 3. CSDs between any two orthogonal directions on a given cylinder are imaginary (real
parts are zero) in a given lateral plane.

Proof. See Fig. 11. By symmetry,

Gab ¼ Gbc ¼ Gcd ¼ Gda:

However, Gda ¼ �Gba ¼ �Gn
ab; therefore Gab ¼ �Gn

ab; and the real part of Gab must be zero, i.e.,
Gab is imaginary, for all rotations y:
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1z
f

1yf
1yf

2yf

2yf

1z
f

2zf

2zf

Fig. 10. Diagram used in the proof of Theorem 2 of Appendix B.

a 

b 

c d 

θ

Fig. 11. Diagram used in the proof of Theorem 3 of Appendix B.
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Appendix C. Evaluation of LOSDF

This appendix summarizes the development in Ref. [10]. LOSDF, the longitudinal spectral
density factors, in the differential (empirical) and point (SLFD) wall pressure correlation schemes
are given by Eqs. (19b) and (22c), respectively. As stated before, the two equations are very
similar, in fact almost identical, in form. The only difference in form occurs in the choice of flow
velocity to define the reduced frequency (or Strouhal number) in the function g; the first uses bulk
flow velocity U in g; while the second utilizes the convection flow velocity, %Uc: The importance, or
net effect, of this is that the method of evaluation of both double integrals, i.e., both equations, is
exactly the same. Hence it need only be demonstrated from one of them.
Accordingly, Eq. (19b) can be rewritten as follows:

Kcn;x
fDh

U
;y

� �
¼ L2

Z 1

0

dx1

Z 1

0

dx2 fcðx1Þfnðx2Þ exp �b
fL

U
j%xj

� �
exp �i

2pfL

aU
%x

� �
;

c; n ¼ 1; 2;y;N; ðC:1Þ

where x ¼ x=L; %x ¼ x2 � x1; b ¼ 0:7; and g has been substituted by Eq. (10c) in the direction
fs ¼ 01: The comparison (or weighting) functions, fcðxÞ and fnðxÞ; in the solution of the problem,
have been chosen as the orthonormal Euler–Bernoulli beam eigenfunctions that satisfy the
boundary conditions of the problem (e.g., for pinned–pinned cylinders, choose
fcðxÞ ¼

ffiffiffi
2

p
sin cpx). Then, noting that d4fcðxÞ=dx

4 ¼ l4cfcðxÞ; where lc ðc ¼ 1; 2;y;NÞ are the
beam eigenvalues (for pinned–pinned conditions, lc ¼ cp), Eq. (C.1) can be integrated by parts
repeatedly, for the case of fL=U > 0:0; to yield [10]

Kcn;xðfDh=U ;yÞ=L2 ¼ � Að�zn; c; nÞ � Iðzn; n; 0:0Þ 	 Bð�zn; c; nÞ þ Aðz; c; nÞ

þ e�zIð�z; n; 1:0Þ 	 Bðz; c; nÞ; c; n ¼ 1; 2;y;N; ðC:2aÞ

where

z ¼
fL

U
b þ i

2p
a

� �
; i ¼

ffiffiffiffiffiffiffi
�1

p
; ðC:2bÞ

Aðz; c; nÞ ¼
1

1� l4n=z4

acn

z
þ

bcn

z2
þ

ccn

z3
þ

fcn

z4

� �
; ðC:2cÞ

Iðz; n; xÞ ¼
fnðxÞ

z
�

1

z2
dfnðxÞ
dx

þ
1

z3
d2fnðxÞ

dx2
�

1

z4
d3fnðxÞ

dx3
ðC:2dÞ

and

Bðz; c; nÞ ¼
1

ð1� l4c=z4Þ

1

ð1� l4n=z4Þ
fezIðz; c; 1:0Þ � Iðz; c; 0:0Þg: ðC:2eÞ
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In Eq. (C.2c), acn through fcn are the weighted residuals given by the following:

acn ¼
Z 1

0

fcðxÞfnðxÞ dx; bcn ¼
Z 1

0

fcðxÞ
dfnðxÞ
dx

dx;

ccn ¼
Z 1

0

fcðxÞ
d2fnðxÞ

dx2
dx; fcn ¼

Z 1

0

fcðxÞ
d3fnðxÞ

dx3
dx: ðC:2fÞ

For the case where fL=U ¼ 0; Eq. (C.1) simplifies to

Kcn;xðfDh=U ;yÞ=L2 ¼
Z 1

0

dx1

Z 1

0

dx2 fcðx1Þfnðx2Þ: ðC:2gÞ

(For the orthonormal pinned–pinned boundary conditions, this equals zero when either c or n is
even, and 8=ðcnp2Þ when both c and n are odd.)

Appendix D. Exact relations which aid the characterization of wall-pressure and force-per-unit-

length CSDs

D.1. Wall-pressure CSDs

It can be shown that, in terms of an intermediary pressure, p2; the CSD between pressures, p1
and p3; can be written as

Sp1p3 ¼
Sp1p2Sp2p3

S #p2 #p2

; ðD:1Þ

where #p2 is the component of p2 that is correlated with both p1 and p3 (see Fig. 12).27 The
methodology for proving Eq. (D.1) can be found in Ref. [26]. The proof is produced here and goes
as follows. Assume that the pressures p1; p2 and p3 each consist of two components only, which
are: (a) completely intercorrelated components, #p1; #p2 and #p3; respectively, and (b) completely
uncorrelated or noise components, n1; n2 and n3; respectively.

28 Letting capital letters represent
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27 It can be shown [26] that S #p2 #p2 ¼ Sp2p2 ½g
2
p1p2

g2p2p3
=g2p1p3

�1=2 where g2pipj
¼ jSpipj

j2=ðSpipi
Spj pj

Þ; the coherence between pi

and pj ; i; j ¼ 1; 2; 3: It would appear that knowing this is of no practical value, other than possibly to validate Eq. (D.1)
experimentally, since the measurement of g2p1p3

requires the knowledge of Sp1p3 a priori, which is the quantity initially

sought.
28By analogy with #p2 defined in Eq. (D.1), #p1 is that component of p1 that correlates with both p2 and p3; and

similarly, #p3; the component of p3 that correlates with both p1 and p2: It is unlikely that in the turbulent pressure field of
a cylinder bundle, significant partially correlated components of p2 would exist, i.e., it is unlikely that when p1 correlates

with p3; some part of p2 will also correlate significantly with p3 but not with p1; or with p1 but not with p3 (see Fig. 12).

This is because the high-frequency components of correlated pressure (the small eddy formations) correlate over shorter

distances than the low-frequency components (the larger eddy formations) and their correlation, over the same distance,

is also smaller in magnitude than those of the larger, low-frequency eddies (this can be deduced from the fact that the

correlation decay functions, b and g decrease relatively rapidly with frequency and separation distance, i.e., with

fLminðyr; ysÞ= %Uc and f %x= %Uc—see Eqs. (21b) and (21c) and see also Refs. [3,8,18,19,26,29]). Thus, the partially correlated

components of p2 consist mainly of the small, high-frequency eddy formations and can be neglected in comparison to

the larger, low-frequency ones [26].
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finite Fourier transforms of the lower case letters, the right-hand side of (D.1) can be written as

Sp1p2Sp2p3

S #p2 #p2

¼
limT-Nð1=TÞð #Pn

1 þ Nn
1 Þð #P2 þ N2Þ limT-Nð1=TÞð #Pn

2 þ Nn
2 Þð #P3 þ N3Þ

limT-Nð1=TÞð #Pn
2
#P2Þ

; ðD:2Þ

where T is the finite time span of the signals, p1; etc., under the Fourier transforms. Noting
that the product of the limits is the limit of the product when the product exists, and that all
products involving noise components, N1; N2 and N3; vanish as T tends to infinity, the
above simplifies to

Sp1p2Sp2p3

S #p2 #p2

¼ lim
T-N

1

T
ð #Pn

1
#P3Þ ¼ Sp1p3 ; ðD:3Þ

which is Eq. (D.1).
Now, by multiplying and dividing Eq. (D.1) throughout by ½Sp1p1Sp3p3 �

1=2; it can be rewritten as

Sp1p3 ¼ ½Sp1p1Sp3p3 �
1=2Cp1 #p2C #p2p3 ; ðD:4aÞ

where

Cp1 #p2 ¼
Sp1p2

½Sp1p1S #p2 #p2 �
1=2

; ðD:4bÞ

C #p2p3 ¼
Sp2p3

½S #p2 #p2Sp3p3 �
1=2

: ðD:4cÞ

Eqs. (D.4a)–(D.4c) are all exact relations which can be used to guide the characterization of wall
pressure CSDs in a bundle of cylinders. Thus, comparing Eq. (D.4a) to Eq. (9a) in the main text,
noting Eqs. (D.4b) and (D.4c) above, and assuming Sp2p2 can be used to approximate S #p2 #p2 ; the
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Fig. 12. Diagram used to obtain the CSD of the pressures at two arbitrary points on two adjacent cylinders.
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following associations can be made:

Sp1p3-S %pr %ps
ðyÞ; Sp1p1-

Sppðx0; y0; f Þ
d0a0

	 dð?x1; y1?Það?y1?Þ;

Sp3p3-
Sppðx0; y0; f Þ

d0a0
	 dð?x3; y3?Það?y3?Þ; Cp1 #p2-bð?; y1; y2?Þ;

C #p2p3-gð?jx2 � x3j; y3?Þ exp½�i2pf ðx3 � x2Þ= %Ucðy3Þ�: ðD:5Þ

D.2. Force-per-unit-length CSDs

By analogy with the preceding, the CSD between two oblique forces per unit length, f1ðx; tÞ and
f3ðx0; tÞ; can be written in terms of CSDs involving an intermediary force per unit length, f2ðx; tÞ; as

Sf1f3ðx; x
0; f Þ ¼ ½Sf1f1ðx;x; f ÞSf3f3ðx

0; x0; f Þ�1=2C
f1 #f2

ðx; x; f Þ 	C #f2f3
ðx; x0; f Þ; ðD:6aÞ

where

C
f1 #f2

ðx; x; f Þ ¼
Sf1f2ðx; x; f Þ

½Sf1f1ðx;x; f ÞS #f2 #f2
ðx;x; f Þ�1=2

; ðD:6bÞ

C #f2f3
ðx; x0; f Þ ¼

Sf2f3ðx; x
0; f Þ

½S #f2 #f2
ðx; x; f ÞSf3f3ðx0; x0; f Þ�1=2

; ðD:6cÞ

and #f2ðx; tÞ is that portion of f2ðx; tÞ that is correlated with both f1ðx; tÞ and f3ðx0; tÞ (see Fig. 13). As
before, the above are exact relations. From Eq. (18), we obtain

Sfifi
ðx;x; f Þ ¼

D2

4

Sppðx0; y0; f Þ
d0a0

Kii;yð?Þ; i ¼ 1; 2:3: ðD:7Þ

ARTICLE IN PRESS

 f1 (x,t) 

 f2 (x,t) 

 f3 (x',t) 

Fig. 13. Diagram used to obtain the CSD of the forces at two arbitrary points on two adjacent cylinders.
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Noting this, along with Eqs. (D.6b), (D.6c), and comparing Eq. (D.6a) to Eq. (18), the following
associations can be made (assuming Sf2f2ðx; x; f Þ approximates S #f2 #f2

ðx; x; f Þ):

Sf1f3ðx; x
0; f Þ-Sfifj

ðx; x0; f Þ; ðD:8aÞ

C
f1 #f2

ðx;x; f Þ-
Kij;yð?Þ

½Kii;yð?ÞKjj;yð?Þ�1=2
; ðD:8bÞ

C #f2f3
ðx;x0; f Þ-gð?jx � x0j?Þ exp½�i2pf ðx0 � xÞ=ðaUÞ�: ðD:8cÞ

In retrospect then, a manipulation (i.e., normalization) of the form of relation (D.8b) would have
simplified our expression for the inter-cylinder lateral spectral density factors given by Eq. (23a) in
the main text, by factoring out all PSD influences from Kij;y; but this is now moot.
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